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Signal Representation and Modeling

The purpose of this lab 1s to

* Understand the concept of a signal and how to work with mathematical
models of signals.

" Discuss fundamental signal types and signal operations used in the
study of signals and systems.

= Experiment with methods of simulating continuous- and discrete-time
signals with MATLAB.

" Discuss symmetry properties.

» Explore characteristics of sinusoidal signals.

* Learn energy and power definitions.



Basic Building Blocks For Continuous-Time Signals

= There are certain basic signal forms that can be used as building
blocks for describing signals with higher complexity.

* In this section we will study some of these signals.

= Mathematical models for more advanced signals can be developed
by combining these basic building blocks through the use of the

signal operations described before.



Unit-Impulse Function

* The unit-impulse function plays an important role in mathematical

modeling and analysis of signals and linear systems.
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Problem 1.8 (a)

1.8. Sketch each of the following functions.

a.  S(t)+d(t—1)+0(t—2)




Problem 1.8 (a) — Solution

S()+6(t—1)+6(t—2)

Al Al Al
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t (sec)



Unit-Step Function

* The unit-step function 1s useful in situations where we need to model a

signal that 1s turned on or off at a specific time instant.

u (t)
U(t) — { ? t > 1

0, t<0

]_j t>t1 14
u(t—h):{o F <t




Problem 1.9 (a)

1.9. Sketch each of the following functions in the time interval —1 <t <5.

a. u(t)+u(t—1)—3u(t—2)+u(t—3)



Problem 1.9 (a) — Solution

a. u(t)+u(t—1)—3u(t—2)+u(t—3)

(t) 1, t>0
u =
0, t <0 0 <0
u(t—l):{l’ r>1 1, 0<t<l
0, t<1 u=-<2, l<t<?2
-3, t>2 _
—3M(t—2): 1, 2<t<3
0, <2 0, £> 73




Problem 1.9 (a) — Solution

a. u(t)+u(t—1)—3u(t—2)+u(t—3)

The signal xy (1)
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Problem 1.9 (a): wav_demol
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Unit-Step Function: stp_demol

Refer to: Section 1.3.2, Pages 20 | ?f-(il—h) |
and 21, Eqns. (1.30) and (1.31), 1L
Figs. 1.27 through 1.29. 0.5 i
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Unit-Pulse Function

= We will define the unit-pulse function as a rectangular pulse with unit
width and unit amplitude, centered around the origin.

1, |t <
[(t) =

N DN

0, [t|>




Unit-Ramp Function

* The unit-ramp function has zero amplitude for t <0,

and unit slope for t > 0.

t, t>0
“”(t)_{ 0, t<0




Unit-Triangle Function

* The unit-triangle function is defined as

t+1, —1<t<0

Alt)y=<¢ —t+1, 0<t<1
0, otherwise
A(t)

1




Problem 1.9 (e)

1.9. Sketch each of the following functions in the time interval —1 <t <5.

e. A(t)+2A(t—1)+1.5A(t—3)— A(t—4)



Problem 1.9 (e) — Solution

e. A{)+2A(—1)+1.5A(—3)—A(t—4)

(1 +1, —1<t<0
A(t)=<—-t+1, 0<t<l
0, otherwise 1 +1, -1<7<0
(21, 0<t<l t+1, 0<r<l
2A(t—1)=<-2t+4, 1<t<?2 —2t+4, 1<t<?2
0, otherwise A =<1.5t-3, 2<t<3
1.5¢-3, 2<1<3 —2.5¢+9, 3<t<4
1.5A(t-3)=<-1.5t+6, 3<t<4 (=5, A<f<5
0, otherwise
o 0, otherwise
—t+3, 3<t<4 )
—A(t—4)=<1t-35, 4<t<5
0, otherwise

C



Problem 1.9 (e) — Solution

e. A{)+2A(—1)+1.5A(—3)—A(t—4)

The signal x5 (1)

Amplitude




Problem 1.9 (e): wav_demol
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Sinusoidal Signals

* The general form of a sinusoidal signal 1s
x(?) =Acos (wyt + 0)
* The parameter A 1s the amplitude of the signal.
* The parameter o, 1s the radian frequency which has the unit of rad/s.

w, = 27f,
» The parameter 6 1s the 1nitial phase angle in radians.



Sinusoidal Signals

* The amplitude parameter A controls the peak value of the signal.
x(?) =Acos (wyt + 0)

At
\ A /\ /\
! l "
\/ . \/ S \/
27 fo 27 fo
I




Sinusoidal Signals: sin_demol

Refer to: Pages 27 and 28,
Eqns. (1.44) through (1.47),
Fig. 1.41.

x(t) = A cos (27 fot + &)
A=2, fo = 150 Hz,
f = 45°
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Periodic vs. Non-Periodic Signals

* A signal 1s said to be periodic if 1t satisfies
x(t+ Tp) = x(9)
at all time 1nstants ¢, and for a specific value of 7, # 0.

= The value 7, 1s referred to as the period of the signal.

x (1)

CEETATATA




Periodic Signals

* A ssignal 1s said to be periodic 1f it satisfies
x(¢+ Ty) = x(1)

x(2)

= The period 7, 1s 2.



Euler’s Formula

= A complex exponential function can be expressed in the form

el

= cos (z) + 7 sin (x)

* This relationship 1s known as Euler’s formula.
= It will be used extensively in working with signals, linear systems

and various transforms.



Problem 1.17

|.17. Using the definition of periodicity, determine if each signal below is periodic or not.
If the signal is periodic, determine the fundamental period and the fundamental frequency.

b.  z(t) =2 sin (v/20t)

o. T (f) _ ej(?t—l—w/l[])



Problem 1.17 (b) — Solution

b.  z(t) =2 sin (v20t)

b. Periodic.

v 20 5 1 T
27 fo = V20 = ﬁD:Z——£ Hz =
T T



Problem 1.17 (g) — Solution

g. z (t) = el (2t+7/10)

g. Periodic.

x(t)=cos2t+n/10)+ jsin(2t+m/10)

1
27 fo =2 = fo=— Hz, To = — =1 sec

U fo



Example 1.6

Discuss the periodicity of the signals

a. r(t) =sin (27 1.5¢t) + sin (27w 2.51)
b. y(t) =sin (2w 1.5¢) + sin (27 2.75 1)



Example 1.6 (a) — Solution

x(t) =sin (2w 1.5t) 4+ sin (2w 2.5 1)

a. For this signal, the fundamental frequency is fo = 0.5 Hz. The two signal frequencies
can be expressed as

fi=15Hz =3fy and fo=25Hz =5,

The resulting fundamental period is Ty = 1/fy = 2 seconds. Within one period of
x (t) there are my = 3 full cycles of the first sinusoid and mso = 5 cycles of the second
sinusoid. This is illustrated in Fig. 1.45.



Example 1.6 (a) — Periodicity

x(t) =sin (2w 1.5t) 4+ sin (2w 2.5 1)

3 One period
S sin (27 1.5t)
: sin (27 2.5t)
—d s 7 (1)
| | |
—0.5 0 0.5 1 1.5 2 2.5 3

Figure 1.45 — Periodicity of 2 (t) of Example 1.6.



Example 1.6 (b) — Solution

y (t) =sin (2w 1.5¢) + sin (27 2.751)

b. In this case the fundamental frequency is fo = 0.25 Hz. The two signal frequencies
can be expressed as

fi=15Hz =6fy; and fy=275Hz =11f,

The resulting fundamental period is Ty = 1/ fy = 4 seconds. Within one period of
x (t) there are mq = 6 full cycles of the first sinusoid and mso = 11 cycles of the second
sinusoid. This is illustrated in Fig. 1.46.



Example 1.6 (b) — Periodicity

y (t) = sin (27 1. 5t)—|—sn(27r2 751)

___________________________________________________________




Energy of a Signal

* We will define the normalized energy of a real-valued signal x(7) as

Egg:/oosc’z(t)dt

— OO
= Consider a voltage source with voltage v(f) connected to the

terminals of a resistor with resistance R.

= Let i(¢) be the current that flows through the resistor.

(1) Cf) {: i(t) h R i(t) CD R v(t)




Energy of a Signal

* The total energy dissipated 1n the resistor would be

_E:/mvﬁﬂﬁﬁﬁ:/mli?dt

— OO — OO0

E:/mv@uﬂﬁ:/mRF@dt

— 00 — 00
» [f the resistor value 1s chosen to be R = 1€, then both equations
would produce the same numerical value:

[ [ e




Problem 1.22 (a)

1.22. Determine the normalized energy of each of the signals shown in Fig. P.1.2.

T, (1)

I I
| I
l !
—1 1 2 3




Problem 1.22 (a) — Solution

r T, (1)
21+2, —-1<1<0
—1+2, O0<t<l1 |
| |
Xq (1) = < 1, l<t<?2 ) t
—t+3, 2<t<3 - b
k 0;, otherwise

0 1 2 3
Ex:/ (2t+2)2dt+/ (—t+2)2dt+/ (1)2dt+/ (—t+3)°dt=5
-1 0 1 2



Time Averaging Operator

* In preparation for defining the power 1n a signal, we need to first
define the time average of a signal.

= We will use the operator (. . .) to indicate time average.

= If the signal x(¢) is periodic with period T, its time average can be

computed as

Ty /2
(z (1)) = TiO/ v (1) dt

Ty /2



Time Averaging Operator: tavg_demo

Refer to: Pages 37 and 38, Egns.
(1.83) and (1.84), Example 1.8,

Fig. 1.49. The signal (t)
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Display annatations 05 T =15 i
1 g & |
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-3 -2 -1 0 1 2 3



Power of a Signal

= For a periodic signal, the normalized average power defined as

> I R
P, = (a (t))E)/_T/Qa: (1) di

* Energy signals are those that have finite energy and zero power.

= Power signals are those that have finite power and infinite energy.



Problem 1.23 (a)

1.23. Determine the normalized average power of each of the periodic signals
shown in Fig. P.1.23.

v (t)




Problem 1.23 (a) — Solution

» The signal is not limited in time. v (1)
()= {0, —_05<t<0 1 ..............
1, 0<t<0.5
x(t+ k)=x(2)
for all ¢, and all integers & o — > t
= The period of the signal 1s T,= 1 _Tzo %

0.5

P = <\x(t)\2> =% [ x*(0)dr = i (O)zdt+0f ()’dt =1 =0.5

-0.5 -0.5 0



Problem 1.23 (a) — Another Solution

» The signal 1s not limited in time.
1, 0<r<0.5
x(1) =
{O, 0.5<r<1
x(t+ k)=x(2)
for all ¢, and all integers &

= The period of the signal 1s T,= 1

P = <\x(t)\2> _ %sz(t)dt _ Of ()2 dr + j (0)dt=1|° =0.5



Problem 1.23 (a) — Justification

The signal =(t)
T

3.5 T T T |

Pulse train
— — — -Time average | |

25 N

15 N

Amplitude
|

O e T e B E e S e B e i R e S A

_05 — T =15 o

15 | | | | | | |



Even and Odd Symmetry

= Some signals have certain symmetry properties that could be utilized in a

variety of ways 1n the analysis.
» A real-valued signal is said to have even symmetry 1if 1t has the property

x(—1) = x(2)
= A signal with even symmetry remains unchanged when it is time reversed.
x (1)

/IN_

— ~—




Even and Odd Symmetry

= A real-valued signal is said to have odd symmetry if 1t has the property
x(—t) = —x(?)
* Time reversal has the same effect as negation on a signal with odd

symmetry. v (1)




Even and Odd Symmetry

Fven signal odd signal



Problem 1.25

|.25. Identify which of the signals in Fig. P.1.25 are even, which ones are odd, and which
signals are neither even nor odd.

z (1) x (t) x (1)
/l\ T It
1 //\
= : t 1 ! 05 | 05 15 °
11
(a) (b) (c)
z (t) z (t) z (t)
1.5
1 14
N \ — o L

| | 1.5 —1 ! /| l ¢




Problem 1.25 — Solution

o (1) ! (1)
1 1-/\
1/\1 f t {).5/ 05 15
(a) (b) (c)
d. Even
b. 0dd

C. Neither even nor odd



Problem 1.25 — Solution

v (t) z (1) r (t)
1.5
1 1-
Y e .
5 051 05 15 ' | l 5 -1/ ] '
' —1 —1
(d) (e) (f)
d. Even
e. Odd

f. Neither even nor odd



Discrete-Time Signals

* Discrete-time signals are not defined at all time instants.

* Instead, they are defined only at time instants that are integer
multiples of a fixed time increment T, that 1s, at = nT.

» The mathematical model for a discrete-time signal 1s a function x|[#]
in which independent variable # 1s an integer, and 1s referred to as the

sample index. x[n]

mmﬂﬂ hﬁﬂlh.quur,mmm_ "

0



Signal Operations

= Arithmetic operations for discrete-time signals bear strong resemblance to
their continuous-time counterparts.

x (1)
—//\’\ T
N

z[n]




Arithmetic Operations: Addition of a Constant Offset

* A constant offset value can be added to this signal to obtain
gln] =x[n] + A
» The offset A i1s added to each sample of the signal x[#n].

gln] =zn] + A

Lmax + A’il B A b

o

M.




Arithmetic Operations: Addition of a Constant Offset

* A constant offset value can be added to this signal to obtain
gln] =x[n] + A
» The offset A i1s added to each sample of the signal x[#n].

gln] =zn]+ A
A <0

Lmax + ffl B

Kithiieuants i K,

Tmin T Ap-——======——=

n




Arithmetic Operations: Multiplication By a Constant Gain Factor

= Multiplication of the signal x[#] with gain factor B 1s expressed as

gln] =

Bx[n]

* The value of each sample of the signal g[n] is equal to the product of

the corresponding sample of x[n] and the constant gain factor B.

gln] = B xn]

B,

nmﬂm

12x ™ —¢Pe

? 'Y B >1

B Lmin

”ﬂﬂh, Al
‘lmll




Arithmetic Operations: Multiplication By a Constant Gain Factor

= Multiplication of the signal x[#] with gain factor B 1s expressed as
gln] = Bx|n]
* The value of each sample of the signal g[n] is equal to the product of
the corresponding sample of x[n] and the constant gain factor B.

gln] = B x[n]

B <1




Arithmetic Operations: Adding Signals

* Addition of two discrete-time signals 1s accomplished by adding the

amplitudes of the corresponding samples of the two signals.

gln] = x[n] + x,|n]

a1 [n] xo[n]

71+12n

J‘m[f"" [I7,




Arithmetic Operations: Multiplying Signals

* Two discrete-time signals can also be multiplied in a similar manner.

gln] = x[n] x,[n]

x1[n] x9[n]

T"TTu l.’T I WT[DMFH_ n




Arithmetic Operations: Time Shifting

* Time shifting operations must utilize integer shift parameters (k).
gln] =x[n — k]

x[n]

/
7rrfTTTII‘.N‘[[[“‘ITTTITT.‘I _o?11170000000 .
e

T

gln] = xn — k|

/ k>0

off1Tt000007Y

ny + k




Arithmetic Operations: Time Shifting

* Time shifting operations must utilize integer shift parameters (k).
gln] =x[n — k]

x[n]

/
717117TII‘.“I[[“‘ITTTITT. _atlfttrenrne .

'?'1-1 ‘llul

n| = xn — k

; k<0
mmﬂmH””mmnn‘l R tAiasciasan X
L1

n, + k




Arithmetic Operations: Time Scaling (Downsampling)

» A downsampled version of the signal x[#] 1s obtained through
g[n] = x[kn], k: integer
= For k=2, we have
gl-1]=x[=2], gl0]=x[0], gll]=x[2], gl2]=x[4],

x[n

J
rﬁ-r*rrT'Trr’H#H HTTITTTTTTL 18 20 22 2,999t~

~10 =8 —6 —4 —2 2 4 s 10 12 14 16 L] JJE87T 26 2

‘f \'\
r-r-1-1] W <‘ } TT'T [T~y 9 10 11 12 gp-p--
5 4 _3 _9 1 3 4 5 6 7 8>~b L,l/ 13 14

~ -
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Arithmetic Operations: Time Scaling (Downsampling)

» A downsampled version of the signal x[#] 1s obtained through
g[n] = x[kn], k: integer
= For k=3, we have

gl=1]=x[=3], gl0]=x[0], gll]=x[3], gl2]=x[6],

x[n]

rf-f-rTfT'ﬂT"H’HﬁH TIT” [Tta 18 20 22 2 fr;iTTT* n

10 =8 —6 —4 —2 > 4 6 8 10 12 14 6]




Arithmetic Operations: Time Scaling (Downsampling)

x(n]

1 1] ||| 1,

—6 -5 —4 -3 -2 —1
AN

\

/
7
x*
] ﬁ-*———————:

I ]
2 3

|
(AN

|
—_



Arithmetic Operations: Time Scaling (Upsampling)

A upsampled version of the signal x[n] 1s obtained through

gln] = { rin/k] if n/kis integer

0, otherwise
x[n] ‘ ‘ ‘ .
-3 -2 -1 0 1 2 3 4 5
S/ ff : \\ N \\\ S0~
/,’ )/ / ! \ \\\ SN \\:"~\\\
R4 /" / : \\ N "'\\ S “x\‘
ol =aln/2l 0L E N Ty Ty T
n even / ;I ¥ ‘ ‘ ‘ ‘
T L]
I - I - - - - S ) - .
: ) 7

—6 -5 -4 -3 -2 -1

o
—
o
e
r:'\

n

n



Arithmetic Operations: Time Reversal

= A time reversed version of the signal x[n] 1s

gln] = x[—n]

z[n]

mnTT”HHHm mh u‘,,mmmm_ "

nq

[—n]

_mﬂmmh_‘u AT nmm” .hTTmm .

—T1




Problem 1.33

1.33.  For the signal x[n] shown in Fig. P.1.33, sketch the following signals.

a. g|n]=xn— 3]
| xn/2], if n/2 is integer
e I = { 0, otherwise
z[n]
4 + ®

. Hl.rﬂ eeaans

° 1+ —4




Problem 1.33 (a) — Solution

The signal gq[n]

Time shifting

giln] =x[n-3]

Amplitude

| S H"TM -

10

[y B

—10 -5 0
Sample index n



Problem 1.33 (e) — Solution

The signal gs[n]

[ T T T T

] = x[n/2], it n/2 is integer
E5L= 0, otherwise

Amplitude

s .l.l.lmr.ﬂ. .

10

ot

—10 -5 0
Sample index n



Unit-Impulse Function

* The discrete-time unit-impulse function 1s defined by

o[n]
17 TL:O ¢

0

= A unit-impulse function that 1s scaled by @ and time shifted by n, samples

1s described by oln — ]

a, nN=mn |
e |

0 ny




Unit-Step Function

* The discrete-time version of the unit-ramp function is defined as

uln]

w={4020

0

» A time shifted version of the discrete-time unit-step function can be

written as uln —

in-ml= 5 o | [T

n <nq ° o

S



Unit-Ramp Function

* The discrete-time version of the unit-ramp function is defined as

n, n>70
=9 9" <0

rin]

%MTTTHHH .,

0




Discrete-Time Sinusoidal Signals

= A discrete-time sinusoidal signal 1s in the general form
x[n] = Acos (Qun + 0)
* The parameter A 1s the amplitude.

* The parameter (2, 1s the angular frequency in radians.

Q, = 2xnF,
(20

Foy = —
! 2

* The parameter 6 1s the phase angle 1n radians.



Discrete-Time Sinusoidal Signals

* Discrete-time sinusoidal signal x[n] = 3 cos(2yn + 7/10) for

(2) £y =0.05 ad ) W‘WHmmﬂmwmmuMml Wﬂﬂmxw
(b) Q, = 0.1 rad HHHHTTT.WH I all WHW
00 -02m G

T




Discrete-Time Sinusoidal Signals

* (Obtaining a discrete-time sinusoidal signal from a continuous-time

sinusoidal signal.

Tq (1)

:r\ _2T~ _Ts //T\5T~ ‘lTs -—.’T«. I | m
| 1 : | : 1 ] ; | ] ] : : 1 1 -
\i/ I 27T \\L/GT Lo




Periodic vs. Non-Periodic Signals

» A discrete-time signal 1s said to be periodic if it satisfies

x|n]=x|n + N]

for all values of the integer index » and for a specific value of N # 0.

b
I
|

0 10 20 30 40 50 60 70 80 90
n



Periodic vs. Non-Periodic Signals

» The parameter NV 1s referred to as the period of the signal.

0 5} 10 15 20 25 30
Index n



Periodic vs. Non-Periodic Signals

A discrete-time signal that 1s periodic with a period of N samples 1s also
periodic with periods of 2N, 3/, . . ., kN for any positive integer k.
For the sinusoidal signal x[n] to be periodic, it needs to satisfy

2nFo N = 21k

and consequently

k
N=Z
Fo

Since we are dealing with a discrete-time signal, there 1s the added

requirement that the period N obtained must be an integer value.



Example 1.16

Check the periodicity of the following discrete-time signals:

a. xn| = cos(0.2n)
b.  x[n] =cos(0.27n + 7/5)
c. xn|=cos(0.3mn —x/10)




Example 1.16 (a) — Solution

a. xn] =cos(0.2n)

a. The angular frequency of this signal is )5 = 0.2 radians which corresponds to a
normalized frequency of
Qo 0.2 0.1
2m 27 T
This results in a period
k _
ko

Since no value of £ would produce an integer value for /N, the signal is not periodic.



Example 1.16 (b) — Solution

b. x[n] =cos(0.2mn + 7 /5)

b. In this case the angular frequency is {)y = 0.27 radians, and the normalized frequency

is fp = 0.1. The period is
ke k

Fy 0.1
For k = 1 we have N = 10 samples as the fundamental period. The signal x|n] is
shown in Fig. 1.83.

N = — 10k

o 1 A E ]

- 0o -

N=1

—9 L ! ! ! I I I
0 5 10 15 20 25 30

Index n

Figure 1.83 — The signal xz[n| for part (b) of Example 1.16.




Example 1.16 (c) — Solution

c. x[n]=cos(0.3mn —7/10)

c. For this signal the angular frequency is €2y = 0.37 radians, and the corresponding
normalized frequency is Fy = 0.15. The period is
k k
Fo 0.5

N

The smallest positive integer k that would result in an integer value for the period N
is & = 3. Therefore, the fundamental period is N = 3/0.15 = 20 samples. The signal
x|n| is shown in Fig. 1.84.



Computing and Graphing Discrete-Time Signals

n = 4:8;
x = [1.1, 2.5, 3.7, 3.2, 2.6];

stem(n, x);
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Computing and Graphing Discrete-Time Signals

n = 0:99;
X2 = sin (0.2* n);

stem(n, Xx); aﬂn]::SHlalsz
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Computing and Graphing Discrete-Time Signals

-20:59;

sin (0.2* n).*((n >=0)&( n <=39));

stem(n,
sin (0.2n)

n=0,...,39

otherwise

.m.”h,, I
qm
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Problem 1.47

1.47.  Consider the discrete-time signal x|[n| used in Problem 1.33 and graphed in Fig.
P.1.33.
a. Express this signal through an anonymous MATLAB function that utilizes the func-
tion ss_ramp(..), and graph the result for index range n = —10, ..., 10.
b. Express each of the signals in parts (a) through (h) of Problem 1.33 in MATLAB, and
graph the results. Use functions ss_step(..) and ss_ramp(..) as needed.
a. gln] = x[n — 3]
b.  g[n]=x[2n — 3] z(n]
c. g[n]=a[-n] 4l
d. gln] =22 — n]
= x(n/2| it n/2 is integer
e gnj={ T/ w2 inte Al .
g gln]==z[n]dn -3 -
h. gln] = x[n| {uln + 2] —uln — 2|}




Problem 1.47 — Solution

SigSys MATLAB v1 03b\SigSys\MATLAB Code\Chapterol

Ss_step.m
function x = ss_step(t)
X = 1*(t>=0);

SS_ramp.m
function x = ss_ramp(t)
X = t.*(t>=0);



Problem 1.47 (a) — Solution

n = -10:10;
X =@(n) n .* ((h>=-4) & (n<=4));
stem(n, x(n));
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Problem 1.47 (b) — Solution

gl = x(n - 3);
stem(n, gl);

o S - T S T G X R O B U
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Problem 1.47 (b) — Solution

g2 = x(2*n - 3);
stem(n, g2);

h B W N 4 O a N w s oo
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Problem 1.47 (b) — Solution

g3 = x(-n);
stem(n, g3);

1 1 I 1 1
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Problem 1.47 (b) — Solution

g4 = x(2 - n);
stem(n, g4);

S s S S . S U o TS U X SR U N S
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Problem 1.47 (b) — Solution

g5

x(n/2) .*

stem(n, g5);

(mod(n, 2)==0);

o B o ho — ':f - h o =~ o
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Problem 1.47 (b) — Solution

g6

x(n) .* (n==0);

stem(n, g6);
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Problem 1.47 (b) — Solution

g7 = x(n) .* (n==3);
stem(n, g7);
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Problem 1.47 (b) — Solution

g8 = x(n) .* (ss_step(n+2) - ss step(n-2));
stem(n, g8);

Wll. oveooos
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Chapter 1: Interactive Demos

>>
>>
>>
>>
>>
>>

sop_demol
sop_demo?2
wav_demol
stp _demol
sin_demol

tavg demo



Appendix: Definite Integrals

a b
1. Order of Integration: / f(x)dx = — / f(x) dx A definition
b a
a
2. Zero Width Interval: / f(x)dx = 0 o cemtomwher
a ] CXI1SLS
b b
3. Constant Multiple: / kf(x) dx = / f(x)dx Any constant k
a a

b b b
4. Sum and Difference: / (f(x) = g(x))dx = / f(x)dx T / 2(x) dx

b c C
S. Additivity: f(x)dx + / f(x)dx = / f(x) dx
! b a

(



